

Truck Hydraulics

Serie F3, Disengageable Fixed Displacement Pumps

ENGINEERING YOUR SUCCESS.

F3 Pump F3-ISO

ContentsPageGeneral Information3Specifications4Pump cross section4Installation Dimensions, F3-81 and -101, Right hand rotation5Port size and Standard versions5-6Installation Dimensions, F3-81 and -101, Left hand rotation6Pump and Line selection7-9Suction fittings10Block diagram engaging the F3 pump11Product Demand11Interface11Installation and start-up for F312Indication-hole13

Conversion factors

1 NI 0.0	25 lbf
1 IN	
1 Nm0,73	8 lbf ft
1 bar14	1,5 psi
1 I0,264 US	gallon
1 cm ³ 0,061	l cu in
1 mm0,	039 in
⁹ / ₅ °C + 32	1 °F
1 kW1,	,34 hp

F3 Pump ISO

The new, disengageable F3 series is a global innovation in mobile hydraulics. By engaging and disengaging the pump from the diesel engine on the fly, you can save substantial amounts of fuel. But you also reduce wear and tear on the pump and minimize the risk of costly downtime and standstills – while also reducing the noise level. All that is required is to press a button on the dashboard, without turning off the engine!

Save on fuel!

For the average truck running 100,000 kilometres a year, savings can amount to between 200 and 300 litres (45– 65 gallons) less diesel, with a corresponding reduction in emissions of greenhouse gases and particulates, all due to the F3 pump being completely disconnectable when not in use. This is a unique, patented characteristic now being launched by Parker Hannifin.

Enhanced reliabaility!

When a pump is fitted to an engine PTO, even small mishaps like a ruptured hose can result in having to be recovered and towed to a workshop, with all its downsides by way of major outlay and high downtime costs. With the new F3, you just disconnect the pump and make your way home under your own steam!

Reduce noise levels!

Compared to a conventional hydraulic pump in the unloaded position, the new F3 generates considerably lower noise levels in disconnected mode – this makes matching future noise emissions regulations easier.

Features of the F3 are:

- Disengageable and engageable
- Air operated
- High selfpriming speeds
- Operating pressures up to 400 bar
- High overall efficiency
- Low noise level
- Small installation dimensions
- Low weight

F3 piston with laminated piston ring.

F3 piston-to-shaft locking.

... thanks to:

- Integrated coupling enables engaging and disengaging the pump
- 45° bent-axis angle
- Optimal inlet port geometry in the end cap
- Spherical pistons high speeds
- Laminated piston rings low leakage
- Positive synchronisation with timing gear
- Installation above the reservoir level possible
- Tolerates low temperatures and high temperature shocks
- Shaft end and mounting flange meet the ISO standard for all sizes

F3-81 and -101, ISO Specifications

Frame size F3-	81	101
Displacement [cm ³ /rev]	81.6	102.9
Max flow ¹⁾ [I/min]		
at 350 bar	163 ³⁾	185 ³⁾
at 400 bar	143	160
Max operating pressure [bar]		
continuous	350	350
intermittent	400	400
Shaft speed [rpm]		
- short circuited pump (low press.)	2300	2300
- max speed at 350 bar ²⁾	2000 ³⁾	1800 ³⁾
at 400 bar ²⁾	1750	1550 ³⁾
Torque ¹⁾ [Nm]		
at 350 bar	453	572
at 400 bar	518	653
Input power [kW]		
- continuous	76	85
- intermittent ⁴⁾	95	123
Weight [kg]	16.7	16.7

BPV-F3 Bypass valve Without manual override

Bypass valve, type	BPV-F3	
Max pressure, continuous	350 bar	
intermittent	400 bar	
Solenoid voltage (option)	24 VDC, (12 VDC)	
Power requirement	17 W	
Operating mode	Activated solenoid: Check valve closed	

- 1) Theoretical values
- Valid at an inlet pressure of 1.0 bar (abs.) when operating on mineral oil at a viscosity of 30 mm²/s (cSt).
- 3) Valid with $2^{1}/_{2}$ " inlet (suction) line. With 2" suction line: F3-81 – max 1400 rpm (Q \approx 120 l/min); F3-101 – max 1000 rpm (Q \approx 120 l/min).
- 4) Max 6 seconds in any one minute.

NOTE: For noise level information, contact Parker Hannifin

F3-81 and -101

Port size

F3 frame size	Pressure port ¹⁾	
-81	1"	
-101	1"	

1) BSP thread (fitting not included)

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See page 10.

Standard versions

Designation	Ordering no.
F3-081-R	372 0091
F3-081-L	372 0092
F3-101-R	372 0093
F3-101-L	372 0094

Port size

F3 frame size	Pressure port ¹⁾
-81	1"
-101	1"

1) BSP thread (fitting not included)

NOTE: The pump **does not** include a suction fitting; it must be ordered separately. See page 10.

Standard versions

Designation	Ordering no.
F3-081-R	372 0091
F3-081-L	372 0092
F3-101-R	372 0093
F3-101-L	372 0094

Pump selection F3

The following table shows pump flow at selected PTO gear ratios and engine rpm's.

PTO gear	Engine speed	Pump flow [l/min]		
ratio	[rpm]	F3-81	F3-101	
1:0.8	800	52	66	
	900	59	74	
	1000	65	82	
	1100	72	91	
	1200	78	99	
1:1.0	800	65	82	
	900	73	93	
	1000	82	103	
	1100	90	113	
	1200	98	123	
1.1.25	800	82	103	
	900	92	116	
	1000	102	129	
	1100	111	141	
	1200	122	154	
1:1.5	800	98	123	
	900	110	139	
	1000	122	154	
	1100	135	170	
	1200	147	185	

Flow and torque formulas (no regard to efficiency)

Flow: Q = $\frac{D \times n}{1000}$ [l/min] where: D is pump displacement [cm³/rev] n is shaft speed [rpm]

Torque: M = $\frac{D \times p}{63}$ [Nm]

where: D is pump displacement [cm³/rev] p is utilised pressure [bar]

NOTE:

- Make sure max torgue and bending moment (due to he weight of the pump) of the utilised PTO are not exceeded. (The approx. center of gravity of the various pump sizes are shown in the installation drawings).
- Make sure max allowed output torque from the PTO is not exceeded.
- Contact Parker Hannifin if the inlet (suction) pressure is believed to be less than 1.0 bar (absolute); insufficient inlet pressure can cause noise and pump damage because of cavitation.

A suitable pump size for a truck application Flow [l/min] can be selected as follows: 200

Operating conditions

As an example, a Hook loader specifies:

 Flow: 70-100 l/min Pressure: 350 bar Diesel engine speed ≈ 800 rpm

Determine pump speed

As example a PTO with a Gear Ratio of 1:1.2.

The pump speed will be:

• 800 x 1.2 ≈ 1000 rpm

Select a suitable pump size

Use diagram 1 and select a pump that will provide 70 - 100 l/min at 1000 rpm.

Follow line 'a' (1000 rpm) until it crosses line 'b' (90 l/min).

• F3-101 is a suitable choice

Required input torque

Make sure the engine PTO tolerates the pump torque. Use diagram 2 to obtain the required pump torque.

Follow a line from 'c' (350 bar) until it crosses the F3-101 line (the selected pump).

• Read 575 Nm (at 'd')

Line selection all pumps

Line type	Flow velocity [m/s]
Inlet (suction)	max 1.0
Outlet (pressure)	max 5.0

Flow rate	te Flow velocity [m/s] at selected line sizes [mm/inches]							
[l/min]	19 / ³ / ₄ "	25 / 1"	32 / 1 ¹ / ₄ "	38 / 1 ¹ / ₂ "	51 / 2"	64 / 2 ¹ / ₂ "	75 / 3"	
25	1.5	0.8	0.5	0.4	0.2	0.1	0.1	
50	2.9	1.7	1.0	0.7	0.4	0.3	0.2	Inlet (suction)
75	4.4	2.5	1.6	1.1	0.6	0.4	0.3	line
100	5.9	3.4	2.1	1.5	0.8	0.5	0.4	
150	8.8	5.1	3.1	2.2	1.3	0.8	0.5	
200	-	-	4.1	2.9	1.6	1.1	0.7	
250	-	-	5.3	3.7	2.1	1.3	0.9	

Table 1.

Outlet (pressure) line

Nomogram

In order to obtain sufficient inlet (suction) pressure to the pump, low noise level and low heat generation, flow speeds shown in table 2, right, should not be exceeded.

From table 1 (page 8), select the smallest line dimension that meets the flow speed recommendation; example:

• At 100 l/min, a 50 mm suction line and a 25 mm pressure line is needed.

Truck Hydraulics **F3 Pump** - Fixed Displacement

NOTE: Long inlet (suction) lines, low inlet pressure (caused by e.g. a reservoir positioned below the pump) and/or low temperatures may require larger line dimensions.

Alternatively, the pump speed will have to be lowered to avoid pump cavitation (which may cause noise, deteriorating performance and pump damage).

Line type	Flow velocity [m/s]
Inlet (suction)	max 1.0
Outlet (pressure)	max 5.0

Table 2.

Flow - Line dimension - Flow velocity 300-Example 1 Pressure line Q = 65 l/min 200 d = 3/4"0.4 v = 3.8 m/s150 0.5 Example 2 '0 Suction Suction line 21/ 60 Q = 50 l/min 100 90 v = 0.8 m/s2 50 d = 1 1/2"80 70 1.0 **1**1/2 60 **1**1/4 30 50 1.5 25 40 20 2.0 3/4 30 ⁵/8 2.5 15 1/2" 3.0 20 Pressure 4.0 3/8" 15 8 5.0 6.0 7.0 10 8.0 6 Q = Flow [l/min]d = internal line v = Flow velocity [m/s] diametre [Ø mm]

-Parker

Table 3.

Suction fittings

for series F3

A 'suction fitting' consists of a straight, 45°, 90° or 135° suction fitting, clamps, cap screws and O-ring.

'Straight' suction fittings for F3

Ordering no.	A mm	B mm	C dia. mm (in.)
378 0637 ¹⁾	25	145	63 <i>(2¹/₂")</i>
378 3523 ¹⁾	32	174	75 (3")

45° suction fittings for F3

Ordering no.	A mm	B mm	C dia. mm (in.)
378 0634 ¹⁾	75	117	63 <i>(2¹/₂")</i>
378 3367 ¹⁾	95	138	75 <i>(3")</i>

90° suction fittings for F3

Ordering no.	A mm	B mm	C dia. mm (in.)
378 1980 ¹⁾	147	83	63 <i>(2¹/₂")</i>
378 8690 ¹⁾	185	83	75 (3")

1) (3 clamps and 3 screws)

Spare parts

Additional Hold-down-clamp kit consists of: hold-down-clamp cap screw and O-ring Ordering no. 378 1321 Additional Hold-down-clamp kit for mounting on BPV

Ordering no. 378 2439

NOTE: A suction fitting *must be ordered separately* (not included with the pump). To choice the correct dimension of suction connection, see page 9.

Parker Hannifin Pump & Motor Division Europe Trollhättan, Sweden

Installation and start-up for F3

Left hand (L.H.; counter clockwise) rotating pump.

Installation

Make sure max torque and bending moment (due to the weight of the pump) of the utilised PTO are not exceeded. (The approx. center of gravity of the various pump sizes are shown in the installation drawings).

The top illustration on page 28 shows two ways of installing a gear on the shaft of fixed displacement pumps. The pump shaft spline end usually fits directly in the PTO internal spline coupling.

NOTE: In order to obtain the longest bearing life, the pump should be installed according to the information shown on page 30 "Pump bearing life".

Fluid viscosity

Recommended viscosity: 20 to 30 mm²/s (cSt).

Operating viscosity limits:

- Min 10 mm²/s; max 400 mm²/s.
- At start-up, max 4000 mm²/s.

Right hand (R.H.; clockwise) rotating pump.

Fluids

The fixed displacement pumps data shown in the specifications for each pump are valid when operating on high quality, mineral based hydraulic oil.

Type HLP (according to DIN 51524) hydraulic oil is suitable as well as biologically degradeable fluids like natural and synthetic esters and polyalfaolefins.

The utilised hydraulic fluid shall meet one of the following Swedish standards:

- SS 15 54 34

- SMR Hydraulic Oil Standard 1996-2. Contact Parker Hannifin for further information.

- **NOTE:** ATF (automatic transmission fluid) and API type CD engine oils may also be useable.
 - Seals are made of nitrile rubber; make sure the utilised fluid is compatible with this material.

Fluid temperature

Main circuit: Max 75 °C.

Before start-up, the housing must be filled with hydraulic fluid.

Drain line

Fixed displacement pumps don't need an external drain line as they are internally drained. When the pump is mounted in a Engine-PTO we recommend a drain line from the bypassvalve directly to oiltank.

Filtration

Filtration should follow ISO standard 4406: 1987, code 18/13. To obtain the longest life of fixed displacement pumps, we recommend an oil cleanliness of 10 µm (absolute).

Start-up

Make sure the entire hydraulic system is clean before filling it with a recommended hydraulic fluid. In particular, make sure the pump is filled (to at least 50%) as the internal leakage does not provide sufficient lubrication at start-up.

NOTE: - The suction port should always be above the pressure port when the pump is installed above the reservoir oil level.

> During operation, the pump must be filled with oil to at least 50%.

Parker Hannifin Pump & Motor Division Europe Trollhättan, Sweden

-Parker

Indication-hole

If any oil should drop out of the <u>indication-hole</u> on the pump;

- Stop the system immediately.
- Determine the cause of leakage.
- Replace damaged parts.
- Make sure you have corrected the source of the problem, not only the symptom.

Parker can not be held responsible for damage to PTO, engine and gearbox caused by improper maintenance of the hydraulic system.

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".

Parker Hannifin Pump & Motor Division Europe Trollhättan, Sweden

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 22 33 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG - Bulgaria, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY – Belarus, Minsk Tel: +48 (0)22 573 24 00 parker.poland@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com HU – Hungary, Budaoers Tel: +36 23 885 470 parker.hungary@parker.com

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA – Ukraine, Kiev Tel: +48 (0)22 573 24 00 parker.poland@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland (industrial) Tel: +1 216 896 3000

US – USA, Elk Grove Village (mobile) Tel: +1 847 258 6200

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN – China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

ID – Indonesia, Tangerang Tel: +62 21 7588 1906

IN - India, Mumbai Tel: +91 22 6513 7081-85

JP - Japan, Fujisawa Tel: +81 (0)4 6635 3050

KR – South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG – Singapore Tel: +65 6887 6300

TH – Thailand, Bangkok Tel: +662 186 7000

TW – Taiwan, New Taipei City Tel: +886 2 2298 8987

VN – Vietnam, Ho Chi Minh City Tel: +84 8 3999 1600

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR – Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

CL – Chile, Santiago Tel: +56 2 623 1216

MX – Mexico, Toluca Tel: +52 72 2275 4200

Ed. 2015-04-21

© 2015 Parker Hannifin Corporation. All rights reserved.

EMEA Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

US Product Information Centre Toll-free number: 1-800-27 27 537 www.parker.com/pmde Catalogue HY30-8210/UK. 1M 12/2015 ZZ

n Centre

